Directions:

1. For each of the following molecules, determine the number of lone pairs and bonded pairs around the central atom. What is the steric number based on this?
2. Describe the structure according to the number of regions of electron density. In other words - what is the Electron Geometry?
3. Rename the shape you see based on the bonded atoms. In other words - what is the Molecular Geometry?
4. Estimate the angle between the atoms attached to the central atom.

Molecule	\# of Lone Pairs	\# of Bond Pairs	Steric \#	Electronic Geometry (the one that includes lone pairs)	Molecular Geometry (the one that is based on the atoms)	Angle between bonds
CHCl_{4}						
NH_{3}						
$\mathrm{H}_{2} \mathrm{O}$						
PCl_{5}						
BF_{3}						
PBr_{3}						
SI_{2}						
SF_{6}						
HCN						

Dougherty Valley HS Chemistry - AP

Bonding - VSEPR

VSEPER SUMMARY

In the "Molecular Geometry" column, write one the following molecular shapes in the appropriate spot in the table.
Note that some terms may be used more than once.

bent	seesaw	T-shaped	trigonal bipyramidal
linear	square planar	tetrahedral	trigonal pyramidal
octahedral	square pyramidal	trigonal planar	

In the "Example of a Molecule" column, write one of the following chemical formulas in the appropriate spot in the table.

CO_{2}	CIF_{3}	PF_{3}	SF_{2}	SO_{2}	XeF_{2}
CF_{4}	CIF_{5}	PF_{5}	SF_{4}	SO_{3}	XeF_{4}

In the "Example of a Polyatomic Ion" column, write one of the following chemical formulas in the appropriate spot in the table.

$\mathrm{Br}_{3}{ }^{-}$	$\mathrm{ClO}_{2}{ }^{-}$	$\mathrm{NO}_{2}{ }^{+}$	$\mathrm{PF}_{4}{ }^{-}$	$\mathrm{SO}_{4}{ }^{2-}$	
	$\mathrm{ClO}_{3}{ }^{-}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{PF}_{6}{ }^{-}$	$\mathrm{SF}_{5}{ }^{+}$	
	$\mathrm{ClF}_{4}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$			

In the "Total Number of Valence Electrons" column, write one of the following numbers in the appropriate spot in the table.

$$
\begin{array}{lllllllllllll}
16 & 18 & 20 & 22 & 24 & 26 & 28 & 32 & 34 & 36 & 40 & 42 & 48
\end{array}
$$

Dougherty Valley HS Chemistry - AP

Bonding - VSEPR

Bonding Domains around central atom	Nonbonding Domains around central atom	Total\# of Electron aomains around central atom	Electron Domain Geometry	Molecular Geometry	Example of a Molecule	Example of a Poyatomic Ion	Total Number of Valence Electrons
2	0	2	linear				
3	0	3	trigonal planar				
2	1	3	trigonal planar				
4	0	4	tetrahedral				
3	1	4	tetrahedral				
2	2	4	tetrahedral				
4	0	5	trigonal bipyramidal				
3	2	5	trigonal bipyramidal		trigonal bipyramidal		
2	3	5	trigonal bipyramidal				
6	0	6	octahedral				
5	1	6	octahedral				
4	2	6	octahedral				

Directions: Determine the total number of valence electrons for each molecule or polyatomic ion below.

Formula	\# Valence e-	Lewis Structure	\# Valence e-	Lewis Structure	\# Valence e-
CO_{2}					
CF_{4}					
ClF_{3}		$:$			
ClF_{5}		0			
PF_{3}					
PF_{5}					
SF_{2}				:	
SF_{4}					
SF_{6}				$:$	
SO_{2}				$:$	
SO_{3}		:		:	
XeF_{2}				$:$	
XeF_{4}					
$\mathrm{Br}_{3}{ }^{-}$					
$\mathrm{ClO}_{2}{ }^{-}$					
$\mathrm{ClO}_{3}{ }^{-}$					
$\mathrm{ClF}_{4}{ }^{-}$					
$\mathrm{NO}_{2}{ }^{+}$					
$\mathrm{NO}_{2}{ }^{-}$					
$\mathrm{NO}_{3}{ }^{-}$					
$\mathrm{PF}_{4}{ }^{-}$					
$\mathrm{PF}_{6}{ }^{-}$					
$\mathrm{SO}_{4}{ }^{2-}$					
$\mathrm{SF}_{5}{ }^{+}$					

Dougherty Valley HS Chemistry - AP

Bonding - VSEPR

Directions: Identify the number of bonding and nonbonding domains around the central atom, and identify the name of the molecular geometry shape.

Molecule	\# of Bonding Domains around central atom	$\begin{array}{\|c\|} \hline \text { \# of } \\ \text { Nonbonding } \\ \text { Domains } \\ \text { around } \\ \text { central atom } \\ \hline \end{array}$	Name of Molecular Geometry shape
--			

Molecule	\# of Bonding arouins around central atom	\# of Nonbonding Domains around central atom	Name of Molecular Geometry shape

